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The last decade has seen an explosion of interest in use

of genetic markers to estimate effective population size,

Ne. Effective population size is important both theoreti-

cally (Ne is a key parameter in almost every aspect of evo-

lutionary biology) and for practical application (Ne

determines rates of genetic drift and loss of genetic vari-

ability and modulates the effectiveness of selection, so it

is crucial to consider in conservation). As documented by

Palstra & Fraser (2012), most of the recent growth in Ne

estimation can be attributed to development or refine-

ment of methods that can use a single sample of individ-

uals (the older temporal method requires at least two

samples separated in time). As with other population

genetic methods, performance of new Ne estimators is

typically evaluated with simulated data for a few scenar-

ios selected by the author(s). Inevitably, these initial eval-

uations fail to fully consider the consequences of

violating simplifying assumptions, such as discrete gen-

erations, closed populations of constant size and selective

neutrality. Subsequently, many researchers studying nat-

ural or captive populations have reported estimates of Ne

for multiple methods; often these estimates are congru-

ent, but that is not always the case. Because true Ne is

rarely known in these empirical studies, it is difficult to

make sense of the results when estimates differ substan-

tially among methods. What is needed is a rigorous, com-

parative analysis under realistic scenarios for which true

Ne is known. Recently, Gilbert & Whitlock (2015) did just

that for both single-sample and temporal methods under

a wide range of migration schemes. In the current issue

of Molecular Ecology, Wang (2016) uses simulations to

evaluate performance of four single-sample Ne estimators.

In addition to assessing effects of true Ne, sample size,

and number of loci, Wang also evaluated performance

under changing abundance, physical linkage and geno-

typing errors, as well as for some alternative life histories

(high rates of selfing; haplodiploids). Wang showed that

the sibship frequency (SF) and linkage disequilibrium

(LD) methods perform dramatically better than the

heterozygote excess and molecular coancestry methods

under most scenarios (see Fig. 1, modified from figure 2

in Wang 2016), and he also concluded that SF is generally

more versatile than LD. This article represents a truly Her-

culean effort, and results should be of considerable value to

researchers interested in applying these methods to real-

world situations.
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Still, Wang’s paper is not likely to be the last word on sin-

gle-sample estimators, for several reasons. (i) Although the

range of scenarios considered is truly impressive, it is not

comprehensive. For example, most real populations have

overlapping generations and are connected to other popu-

lations by migration, but neither was modelled in Wang

(2016). (ii) Nonrandom samples (with an excess of rela-

tives) appear to be very common in studies of natural pop-

ulations, but the consequences of this for estimating Ne

have not been systematically evaluated in any study. It

seems likely the SF method would be particularly sensitive

to this issue. (iii) The prior for Ne introduced by Wang in

this article appears to be potentially very useful but needs

fuller evaluation, as do two empirical correction factors he

derived that are used in calculating the prior. Except in the

set of simulations evaluating effects of different priors, it

seems that the true Ne was used as the prior for the SF

method. This would improve performance with simulated

data, but using true Ne as a prior is not an option for a

researcher who wants to find out what the true Ne is. (iv)

One promising single-sample estimator using approximate

Bayesian computation (ONeSAMP; Tallmon et al. 2008)

was not included in Wang’s paper. Use of ONeSAMP has

been limited by an online-only implementation, and it was

temporarily unavailable in early 2016. Downloadable and

online versions of ONeSAMP 2.0, which can accept SNP or

mSAT data, are now available at http://www.cs.-

colostate.edu/~onesamp/index.php.

It is inevitable that in the future an increasing fraction of

genetic estimates of Ne will be based on genomics-scale

data sets with many thousands of loci, and there are some

interesting tradeoffs between the SF and LD methods in

this respect that were not fully evaluated by Wang. Fig-

ure 1 shows that when only a few loci are available, the SF

method performs relatively well, provided sample sizes are

adequate and true Ne is not very large. However, perfor-

mance of the SF method actually declined slightly when

more than 10 ‘microsat’ loci were used. Presumably this

reflects influence of prior, as well as the fact that once sib-

ships are correctly identified, more markers do not
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improve performance of the SF method. In contrast, the

root-mean-square error of 1=N̂e (RMSE) for the LD method

declined steadily with increasing loci (Fig. 1), suggesting

that performance would exceed that of the SF method if

more loci were used. However, although it is easy to

model lots of ‘unlinked’ markers in a computer, real organ-

isms have a limited number of chromosomes, so physical

linkage is inevitable, and this linkage downwardly biases

N̂e for the LD method. As it happens, another recent paper

(Waples et al. 2016) showed that this downward bias in N̂e

in the LD method is related to recombination rate and can

be estimated from the number of chromosomes (or the

total genome length, as modelled by Wang). This suggests

that a simple bias correction for linkage could enable the

LD method to take advantage of increased precision

afforded by genomics-scale data sets.

The papers by Gilbert & Whitlock (2015) and Wang

(2016) share another feature besides comparative evalua-

tion of Ne-estimation methods: they both were conducted

by authors of likelihood-based software that is very

computationally demanding (estimates for a single sample

can take hours, days or even weeks). Although other

researchers routinely use these programs for analysis of

empirical data, it would be a major undertaking for any

third party to rigorously evaluate performance using sim-

ulated data for hundreds or thousands of replicates for

each scenario of interest (by my count, Wang evaluated

two metrics – harmonic mean N̂e and RMSE – for over 55

different parameter combinations for each of four estima-

tors). As a consequence, most such evaluations are carried

out by the authors themselves, who are much better posi-

tioned to develop streamlined pipelines to conduct the

daunting matrix of analyses. I am not suggesting that

either of the above papers is anything but objective, and

(disclaimer!) I have been involved with a number of pub-

lished evaluations of temporal or LD methods that I

helped develop. Furthermore, this issue is not restricted

to Ne estimators; it also applies to many other software

packages for population genetic data analysis. However,

anything that facilitates independent, third-party evalua-

tion of such programs will benefit the scientific commu-

nity as a whole. I do not have any simple solutions to

offer, but some guidelines could help. Programs should

accept input files in standard formats. Slick graphical

interfaces are fine, provided an option also exists for

batch-processing large numbers of replicate samples. Out-

put files should be in machine-readable formats. Simula-

tion code should be made available on a public site. It is

encouraging to see that Wang (2016) has posted on Dryad

code and instructions for conducting the types of simula-

tions and analyses reported in his paper.

Fig. 1 Performance of four single-sample estimators with simu-

lated data for an isolated population with true Ne = 100 (thin

black line in top graph), as a function of the number of

unlinked ‘microsat’ loci (each with 10 alleles). Sample size was

50 individuals. Note the log scale for both axes in the bottom

graph. Methods: SF = sibship frequency (Wang 2009);

LD = linkage disequilibrium (Waples & Do 2008);

HE = heterozygote excess (Pudovkin et al. 1996); MC = molec-

ular coancestry (Nomura 2008). Modified from figure 2 in

Wang (2016).

Fig. 2 Distribution of 500 estimates of effective size for the

temporal (Waples 1989) and LD (Waples & Do 2008) methods,

based on simulated data with constant Ne = 100 (arrow) and

samples of 50 individuals genotyped for 100 unlinked and dial-

lelic (SNP) loci. The temporal samples were taken six genera-

tions apart, and only the second sample was used for the LD

analyses. For each replicate, a ‘combined’ estimate was also

computed as the harmonic mean of N̂e for the temporal and

LD methods. Data were simulated as described by Waples (in

press).
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Finally, I would like to highlight a potential opportunity

to improve our ability to estimate effective size in natural

populations by combining information from more than one

estimator. If two methods with approximately comparable

performance provide an estimate of a parameter of interest,

the variance of a combined estimate will be smaller than

for either estimate alone, providing the estimates are not

strongly positively correlated. This principle can be illus-

trated by combining estimates of Ne from simulated data

using the temporal and LD methods, which provide essen-

tially independent information (Fig. 2). Under the scenario

modelled, the two estimators had nearly the same preci-

sion (CV of N̂e = 0.26 and 0.25 for the temporal and LD

methods, respectively), and the 500 replicate N̂e values for

the two estimators were uncorrelated (r = �0.001). Com-

bining the estimates (in this case by taking an unweighted

harmonic mean N̂e) reduced the CV to 0.17 and visibly

shrunk the distribution of N̂e (Fig. 2). The LD and SF

methods also use largely independent information, so the

estimates they produce might be uncorrelated as well, but

that is only a conjecture that requires empirical evaluation.

Questions to explore include: (i) What is the optimal way

to combine results from different estimators? Something

like a weighted harmonic mean of N̂e might be best, with

the weights being an inverse function of RMSE. (ii) How

could one compute confidence intervals for a combined

estimate?
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